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For the radius ratio η ≡ Ri/Ro = 0.1 and several rotation rate ratios µ ≡ Ωo/Ωi , we
consider the linear stability of spiral Poiseuille flow (SPF) up to Re = 105, where Ri

and Ro are the radii of the inner and outer cylinders, respectively, Re ≡ V Z(Ro −Ri)/ν
is the Reynolds number, Ωi and Ωo are the (signed) angular speeds of the inner and
outer cylinders, respectively, ν is the kinematic viscosity, and V Z is the mean axial
velocity. The Re range extends more than three orders of magnitude beyond that
considered in the previous µ = 0 work of Recktenwald et al. (Phys. Rev. E, vol. 48,
1993, p. 444). We show that in the non-rotating limit of annular Poiseuille flow, linear
instability does not occur below a critical radius ratio η̂ ≈ 0.115. We also establish the
connection of the linear stability of annular Poiseuille flow for 0 <η � η̂ at all Re to the
linear stability of circular Poiseuille flow (η = 0) at all Re. For the rotating case, with
µ = −1, − 0.5, − 0.25, 0 and 0.2, the stability boundaries, presented in terms of critical
Taylor number Ta ≡ Ωi(Ro −Ri)

2/ν versus Re, show that the results are qualitatively
different from those at larger η. For each µ, the centrifugal instability at small Re does
not connect to a high-Re Tollmien–Schlichting-like instability of annular Poiseuille
flow, since the latter instability does not exist for η < η̂. We find a range of Re for
which disconnected neutral curves exist in the k–Ta plane, which for each non-zero µ

considered, lead to a multi-valued stability boundary, corresponding to two disjoint
ranges of stable Ta. For each counter-rotating (µ < 0) case, there is a finite range of
Re for which there exist three critical values of Ta, with the upper branch emanating
from the Re = 0 instability of Couette flow. For the co-rotating (µ = 0.2) case, there
are two critical values of Ta for each Re in an apparently semi-infinite range of Re,
with neither branch of the stability boundary intersecting the Re = 0 axis, consistent
with the classical result of Synge that Couette flow is stable with respect to all small
disturbances if µ > η2, and our earlier results for µ>η2 at larger η.

1. Introduction
The stability of spiral Poiseuille flow (SPF) between coaxial cylinders, driven by rota-

tion of one or both cylinders and an axial pressure gradient, has been of interest for
many years (Takeuchi & Jankowski 1981; Ng & Turner 1982; Meseguer & Marques
2002). Cotrell & Pearlstein (2004) and Cotrell, Rani & Pearlstein (2004), hereinafter
referred to as CP and CRP, respectively, have presented complete linear stability boun-
daries for several radius ratios and rotation rate ratios, identified the connection bet-
ween centrifugal instability when there is no axial flow and a Tollmien–Schlichting-like
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instability of non-rotating annular Poiseuille flow, and showed that the computed
stability boundaries are in excellent agreement with experiment over wide ranges of
Re and the ratio of the angular velocities of the two cylinders.

The wide-gap case is of significant potential interest in applications, since, with
no mean axial flow, the stable range Ta1 � Ta � Ta2 for steady axisymmetric Taylor
vortex flow increases as η decreases (Debler, Füner & Schaaf 1969; Snyder 1970;
DiPrima, Eagles & Ng 1984), with Ta2/Ta1 seeming to be between 10 and 100 for
η = 0.5, compared to much smaller values in the narrow-gap (η → 1) limit. Here,
η ≡ Ri/Ro is the radius ratio, Ta ≡ Ωi(Ro −Ri)

2/ν is the Taylor number, Ri and Ro

are the radii of the inner and outer cylinders, respectively, Ωi and ν are the angular
speed of the inner cylinder and the kinematic viscosity, respectively, and Ta1 and
Ta2 are the critical values at which steady Couette flow and steady Taylor vortex
flow, respectively, lose their stability. If axially-propagating axisymmetric Taylor-like
vortices remain stable in a large range of Ta when a small mean axial pressure
gradient is superimposed, then flow in a wide-gap or small-η annulus driven by
cylinder rotation and an axial pressure gradient will be of interest where laminar
(and particularly, steady and axisymmetric) heat or mass transfer at rates in excess of
the diffusive rate associated with Couette flow is desired. The laminar nature of the
flow is especially important for mixing in a number of biomedical and biotechnology
applications, where turbulent shear is associated with cell damage (Strong & Carlucci
1976; Resende et al. 2001).

To date, the only published results for the stability of SPF with η < 0.5 appear
to be those of Chung & Astill (1977), Hasoon & Martin (1977), and Recktenwald,
Lücke & Müller (1993), all of which are restricted to µ ≡ Ωo/Ωi = 0, where Ωo

is the angular speed of the outer cylinder. Chung & Astill graphically showed
critical values of Ta for Re =0, 50 and 100 at η =0.1 and 0.25, and for Re =150
at η = 0.25. (Here, Re ≡ V Z(Ro − Ri)/ν is the Reynolds number, where V Z is the
mean axial speed. We have converted other authors’ Reynolds numbers to values
based on our definition.) As discussed in § 3.1, their numerical results are incorrect.
Contemporaneously, Hasoon & Martin (1977) reported computations of the critical
Taylor number up to Re= 1000. They used an axial velocity profile uniform across the
annular cross-section, which approximation was said to be validated by comparison to
results at η = 0.9 for the correct axial profile. The correctness of the results of Hasoon
& Martin has been questioned by DiPrima & Pridor (1979), who also identified an
error in the governing equations used by the former authors. In Recktenwald et al.
(1993), η = 0.1 was one of the radius ratios for which the stability of SPF with respect
to axisymmetric disturbances was investigated numerically over the range 0 � Re � 20,
and for which a quadratic function of Re2 was fitted to the results.

Here, we report SPF stability computations for η = 0.1. For the five values of µ

investigated, the Reynolds-number range extends more than three orders of magnitude
beyond the largest Re considered in the µ =0 analysis of Recktenwald et al. (1993).
For µ �= 0, the results at small and intermediate Re differ qualitatively from their
results at µ = 0, and also from ours (CP, CRP) at larger η. For both positive and
negative values of µ, we find regions of Re in which closed neutral curves give
rise to two disjoint ranges of stable Ta. We also show that annular Poiseuille flow
(Ta= 0) is linearly stable for all Re if η < η̂ ≈ 0.115, so that at high Re there is no
transition from centrifugal instability to a Tollmien–Schlichting-like instability, unlike
the larger-η cases previously studied.

The paper is organized as follows. The results are presented in § 2, followed by
a discussion in § 3 of the relationship to other work, the direction of disturbance
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Figure 1. For µ= 0 and η = 0.1: (a) critical Ta, (b) critical m, (c) critical k,
(d) critical c versus Re.

wave propagation, and implications for experiment. Some conclusions are presented
in § 4.

2. Results
The formulation and numerical methods are discussed in CP. Code validation was

accomplished by comparison to previous tabulated results for η � 0.5, as described in
CP. Comparison of computations at smaller η to the graphical results of Mahadevan &
Lilley (1977) and Garg (1980) for annular Poiseuille flow (Ta =0), and to the tabulated
small-Re results of Recktenwald et al. (1993) (see § 3.1) revealed excellent agreement. In
contrast to the 40 terms that always provided adequate resolution convergence for lar-
ger η (CP), up to 70 terms were sometimes required to achieve convergence for η =0.1.

We present results for cases in which the outer cylinder is fixed (µ = 0), or rotates
in the opposite direction to (µ = −0.25, − 0.5 and − 1) or in the same direction as
(µ = 0.2) the inner cylinder. Results for three of these rotation rate ratios (µ = −0.5,
0 and 0.2) have been presented for η =0.5 by Takeuchi & Jankowski (1981) and in
CP, and allow the effects of smaller radius ratio to be clearly identified. The other
two counter-rotating cases (µ = −1 and − 0.25) provide additional information on
the effects of the rotation rate ratio on the stability of counter-rotating flow.

2.1. Non-rotating outer cylinder

For µ = 0, critical values of the Taylor number Ta, azimuthal wavenumber m, dimen-
sionless axial wavenumber k, and dimensionless wave speed c are shown in figure 1.
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Figure 2. Critical ηTa versus Re for µ= 0 and η = 0.1, 0.5, 0.77 and 0.95.

(The dimensionless axial wavenumber and wave speed are scaled with the gap and
mean axial velocity, respectively, as discussed in CP.). Figure 1(a) shows that the
stability boundary is a single-valued function of Re (i.e. there is a single critical Ta
for each Re). For all combinations of µ and η satisfying µ<η2 considered in CP and
CRP, the stability boundary was single-valued for 0 � Re � ReAP (η), with the flow
unstable at all Ta for Re> ReAP , where ReAP is the critical Re for annular Poiseuille
flow. For η = 0.1, the Re= 0 intercept of the stability boundary at Tacrit = 1264.43
corresponds to the onset of Taylor vortex flow. As Re increases, Tacrit increases until
reaching a global maximum (near Re= 46). As for larger η, scalloping occurs due
to integer jumps in mcrit, with the pronounced slope discontinuities near Re = 46
(point B) and 87 (point A) corresponding to transitions of the critical azimuthal
wavenumber (mcrit) from 0 to 1, and from 1 to 2, respectively. As Re increases beyond
the maximum at 46, Tacrit decreases and approaches an asymptotic value Ta∞

crit ≈ 460.
As shown in figure 2, this result differs qualitatively from results at larger η (CP and

CRP), for which Tacrit decreases sharply at Re∗, corresponding to transition from a
centrifugal instability to a Tollmien–Schlichting-like instability. The η = 0.1 behaviour
is consistent with that reported for the non-rotating (Ta = 0) annular Poiseuille case
at small η by Mahadevan & Lilley (1977) and Garg (1980), who found that ReAP

increases rapidly as η decreases below 0.15. For Ta =0, table 1 shows that as η

decreases below 0.2, ReAP increases monotonically, and that there appears to be a
critical value η̂ < 0.12 below which no critical ReAP exists. Extrapolation of linear
and quadratic least-squares polynomials fitted to the η dependence of 1/ReAP for the
three and four smallest values of η for which ReAP was computed gives values of
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η Recrit kcrit mcrit ccrit

0.12 205 486 0.20038 1 0.289
0.125 107 424 0.32219 1 0.304
0.13 72 665 0.41182 1 0.318
0.133 60 328 0.45830 1 0.326
0.135 53 986 0.48739 1 0.331
0.137 48 710 0.51524 1 0.336
0.14 42 286 0.55488 1 0.344
0.15 28 660 0.67428 1 0.366
0.16 21 277 0.77912 1 0.385
0.17 16 900 0.87593 1 0.400
0.18 14 170 0.95879 1 0.412
0.19 12 432 1.0331 1 0.421
0.2 11 326 1.0988 1 0.426
0.3 11 475 1.4350 1 0.393
0.4 14 552 1.6307 1 0.354
0.5 10 359 1.4786 2 0.404
0.6 10 296 1.7175 2 0.385
0.77 8883.3 1.9974 1 0.383
0.8 8548.4 2.0204 0 0.386
0.95 7739.5 2.0399 0 0.395

Table 1. Critical values versus η for annular Poiseuille flow.

η̂ =0.1145 and 0.1143, respectively. Nonlinear least-squares fitting of the results to a
curve of the form Re= a(η −ηo)

b gives ηo = 0.1145, 0.1142, 0.1156 and 0.1156, using
values at the three, four, five and six smallest values of η, respectively. This suggests
a critical radius ratio of about 0.115 below which annular Poiseuille flow is linearly
stable for all Re.

Figure 3 shows neutral curves in the k–Ta plane for several azimuthal wavenumbers.
Neutral curves for m =1 and 2 each consist of a single ‘primary’ neutral curve (not
displayed, since they lie far above the Ta range shown) and one closed disconnected
neutral curve (CDNC). Each primary neutral curve has a vertical asymptote at
k = 0, with Ta tending to infinity as k → ∞. The closed neutral curves are said to
be disconnected in the sense that they are not connected to other neutral curves at
bifurcation points (Pearlstein 1981; Pearlstein, Harris & Terrones 1989). For values of
m other than 1 and 2, there is only a primary neutral curve. In contrast to results for
larger η (cf. figure 4 of Ng & Turner 1982), the primary neutral curves for some m

(e.g. m =0) are the ‘envelopes’ of two intersecting branches, across each of which one
temporal eigenvalue (or possibly a pair) crosses into the right half-plane (RHP). At the
intersections, the slopes of these primary neutral curves are discontinuous. The parts
of these branches not shown (i.e. the smooth continuation of each branch through
the junction) correspond to curves on which one or more additional eigenvalues cross
into the RHP, in addition to the one that crossed at a lower Ta on the primary branch.
For µ = 0, figure 3 shows that existence of CDNCs in the k–Ta plane does not lead
to multiple ranges of stable Ta for fixed Re. For a CDNC to lead to a multi-valued
stability boundary, either there must be no primary neutral curve (as for η =0.5 and
µ > η2 in CP), or there must be some range of Ta lying between the maximum Ta on
a CDNC and the minimum Ta on a primary neutral curve, through which no other
neutral curve passes. For η =0.1, neither situation obtains for µ = 0.
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Figure 3. Neutral curves for Re =100, µ= 0 and η = 0.1.

Figure 1(b) shows that mcrit increases stepwise, from 0 for 0 � Re � 46, to 1 for
46 � Re � 87, and to 2 for Re � 87. The value of mcrit remains 2 up to at least
Re= 105.

As is the case for η = 0.5 (Takeuchi & Jankowski 1981; CP), figure 1(c) shows
that kcrit is a piecewise continuous function of Re, and decreases monotonically with
increasing Re over each range for which mcrit is a constant. This behaviour leads to
the three-part ‘wavenumber fan’ shown. To an excellent degree of approximation, kcrit

varies inversely with Re over the range 250 � Re � 105.
Figure 1(d) shows that the dimensionless wave speed of the critical disturbance,

ccrit, which is the ratio of the dimensional phase velocity to the mean axial speed V Z ,
is nearly constant over the range of Re for which mcrit = 0. Near Re = 46, where mcrit

increases from 0 to 1, ccrit jumps by about 50 %, and then falls over the range where
mcrit = 1. It then increases discontinuously again near Re= 87, where mcrit jumps to 2.
The critical wave speed approaches an asymptotic value of about 1.54 as Re → ∞.

2.2. Counter-rotating cylinders (µ < 0)

For µ = −0.25, − 0.5 and − 1, the results differ qualitatively from those for µ = 0
(§ 2.1), and from those for µ = −0.5 at η � 0.5 (Takeuchi & Jankowski 1981; CP;
CRP). We discuss the three values of µ in order, with a detailed description of the
neutral curves being given for µ = −0.5, the counter-rotating case studied at larger η.

µ = −0.25

For µ = −0.25, figure 4(a) shows that over the range 0 � Re � 94, Tacrit is single-
valued and decreases monotonically from its value of 2759.3 at Re= 0. Near Re = 60
(point B), the slope on the high-Ta branch changes discontinuously, corresponding
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Figure 4. For µ= −0.25 and η = 0.1: (a) critical Ta, (b) critical m, (c) critical k, (d) critical c
versus Re, (e) Enlargement of part of (d).

to mcrit increasing from 0 to 1, as shown in figure 4(b). More strikingly, for
94 < Re � 125.5, there exist three values of Tacrit and two disjoint ranges of stable
Ta, one below the low-Ta branch and one between the intermediate- and high-Ta
branches. A second slope discontinuity occurs where the high-Ta (low-Re) branch
joins the intermediate branch near Re = 125.5 (point A). The intermediate-Ta branch
continues downward to the turning point C, where it smoothly connects with the
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low-Ta (high-Re) branch at Re= 95. For large Re, Tacrit approaches an asymptotic
value Ta∞

crit ≈ 244.
This triple-valued stability boundary is a direct consequence of the existence of

CDNCs, previously found in stability analyses of quiescent fluid layers in which
the density depends on two or more stratifying agencies with different diffusivities
(Pearlstein 1981; Pearlstein et al. 1989; Terrones & Pearlstein 1989; Lopez, Romero
& Pearlstein 1990), in a buoyancy-driven flow in an inclined layer (Chen & Pearlstein
1989), in differentially rotating flows between differentially heated concentric vertical
cylinders (Ali & Weidman 1990) and in a two-phase parallel shear flow with a
deformable interface (Blennerhassett 1980). This will be illustrated in detail below
for µ = −0.5, a case in which the range of triple-valuedness is larger. As discussed
for the double-valued stability boundaries found for larger η (CP), the existence of
multiple values of Tacrit for some range of Re at fixed µ and η does not correspond
to one base flow becoming unstable at several different Taylor numbers. Rather,
it should be interpreted in terms of a base flow with a particular axial velocity
(depending only on η) becoming unstable at two different magnitudes of the azimuthal
velocity (whose profile depends only on µ and η), whose magnitude depends on
Ta/Re.

Figure 4(b) shows that as Re increases, mcrit again increases from 0 to 1 (at point
B), and from 1 to 2 (at point A) over the range of Re considered. Comparison to the
µ =0 case (figures 1a and 1b) shows that these transitions occur at similar Reynolds
numbers, and that the intermediate-Ta branch AC for µ = −0.25 corresponds to the
m =2 branch in figure 1(a), which begins at A and continues to large Re.

Figure 4(c) shows that kcrit is again a piecewise continuous function of Re, which
in this case is triple-valued for Reynolds numbers between the turning point C and
the junction A. Unlike the behaviour observed for µ = 0, the dependence of kcrit

on Re is not fan-like. On the high-Ta branch, terminating at A, kcrit is essentially
independent of Re, with a small discontinuity at B/B ′, where mcrit increases from 0 to
1. (The prime denotes a second point on the mcrit, kcrit or ccrit plots, at the same Re as
the unprimed point, corresponding to a value of Re at which mcrit jumps.). The critical
value of k is much smaller on the intermediate- and low-Ta branches, and increases
on the former branch as Re decreases from the junction A to the turning point C. At
some Re beyond C, kcrit reaches a maximum, and falls off nearly inversely with Re
above about Re= 200.

Figure 4(d) and the enlargement figure 4(e) show that for µ = −0.25, ccrit is positive
and essentially constant on the m =0 portion of the high-Ta branch, as in the µ = 0
case considered above (figure 1d) and in all of the µ<η2 cases considered in CP and
CRP for η � 0.5. The critical wave speed increases by approximately a factor of two at
the first azimuthal wavenumber transition (B/B ′), and then decreases monotonically
until the junction is reached at A. At that point, ccrit jumps discontinuously to
a negative value (about − 32) at A′, corresponding to a travelling-wave disturbance
propagating upstream against the axial component of the base flow. As we move down
along the intermediate branch of the stability boundary in figure 4(a), the magnitude
of ccrit rapidly decreases, corresponding to a reduction in the speed of the backward-
propagating neutral disturbance as Re decreases. At the turning point C, ccrit = −3.59.
As Re increases on the low-Ta branch, ccrit continues to increase, and near Re =201
smoothly passes through zero, corresponding to a reversal in direction of the
travelling-wave disturbance, and the existence of a single Re at which the disturbance
is stationary. Finally, as Re increases beyond 300, ccrit approaches its asymptotic value
of about 0.1.
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µ = −0.5

For the counter-rotating µ = −0.5 case, figure 5(a) shows that the high-Ta branch
(H) of the stability boundary originates at Re =0 and terminates near Re =172.0
(point A), where it joins the intermediate-Ta branch (I) with a slope discontinuity.
As we move downward on the intermediate branch, Re decreases, through a small
slope discontinuity at point B (see figure 5e), to the turning point C, where this
branch smoothly connects to the low-Ta (high-Re) branch near Re =83.3. Thus, in
the multi-valued range 83.3 � Re � 172.0, the base flow is linearly stable below the
low-Ta branch, as well as between the intermediate- and high-Ta branches. The flow
is unstable between the low- and intermediate-Ta branches, and above the high-Ta
branch.
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For two values of Re in the triple-valued range, the neutral curves in figures 6(a)
and 6(b) show that a gap exists between the maximum Ta on the CDNCs and the
minimum Ta on the m =0 neutral curve, which is the lowest-lying primary neutral
curve (with a vertical asymptote at k =0, and apparently existing as k → ∞) for
these Reynolds numbers. For Re = 90, figure 6(a) shows two CDNCs, lying at axial
wavenumbers less than one-twentieth the value assumed by k at the minimum of the
m =0 neutral curve. As Re increases through 83.3, the m =2 CDNC initially appears
as a point, and at a slightly higher Re is joined by the m = 3 CDNC, which also makes
its first appearance at a point. The flow is also stable for Ta below the minimum of
the m = 2 CDNC. For Re = 165, figure 6(b) shows that several other CDNCs have
appeared, and the gap between the minimum Ta on the m =0 neutral curve and the
largest Ta on any CDNC (on m =3) has been greatly reduced. For Re = 165, the
minimum still occurs on the m =2 CDNC. (For Re =90 and 165, all of the CDNCs
and the m = 0 primary neutral curve are shown, and no part of any other neutral
curve lies below the minimum of the m =0 curve.).

The junction at point A corresponds to the Re (172.0) at which the gap disappears
between the maximum on the m = 3 CDNC and the minimum on the m =0 primary
neutral curve. As we continue down the intermediate branch (I) of the stability
boundary in figure 5(a), mcrit jumps from 3 to 2 at point B (Re = 99.5 in figure 5b),
between the values of Re for which neutral curves are shown in figures 6(a) and
6(b), and each CDNC shrinks and ultimately coalesces at a point in the (k–Ta)-
plane. The last of these coalescences (for the m =2 CDNC at Re =83.3) corresponds
to the intermediate- and low-Ta branches of the Re–Ta stability boundary joining
smoothly at the turning point C in figure 5(a), near Ta =480. The behaviour of the
neutral curves at each end of the triple-valued range is qualitatively identical to that
found in earlier studies of the onset of buoyancy-driven convection in horizontal
fluid layers (Pearlstein 1981; Pearlstein et al. 1989; Terrones & Pearlstein 1989;
Lopez et al. 1990).
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Figure 5(b) shows that mcrit = 0 on the high-Ta branch, jumping directly to 3 at
point A. This value of mcrit is maintained as we move downward on the intermediate-
Ta branch to B , at which point mcrit jumps to 2, which is the critical m up to at least
Re = 105. For µ= −0.5, there is no Re for which mcrit = 1. The maximum mcrit occurs
at intermediate Re values, which differs from the µ = 0 and − 0.25 cases above and
the µ<η2 cases considered for η � 0.5 in CP and CRP, for which mcrit increased by
unit steps along the arclength of the stability boundary.

Figure 5(c) shows that kcrit is a piecewise continuous function of Re, and is
triple-valued for Reynolds numbers between the turning point C near Re =83.3 and
the junction A near Re =172.0. Like the behaviour predicted for µ = −0.25, the
dependence of kcrit on Re is not ‘fan-like’. On the high-Ta, m =0 branch, terminating
at A, kcrit is essentially independent of Re. On the intermediate branch, kcrit increases
as Re decreases from A to B . At B , where mcrit jumps from 3 to 2, kcrit decreases
discontinuously and then increases through the turning point C, until reaching a
maximum on the low-Ta branch near Re =120. Beyond Re =120, kcrit again varies
nearly inversely with Re.

Figure 5(d) shows that on the high-Ta branch, ccrit is positive and essentially
constant, as in the µ = 0 and − 0.25 cases considered above (figures 1d and 4d) and
all µ>η2 cases considered in CP and CRP. The high-Ta branch emanating from
Re = 0 terminates at A, and ccrit jumps discontinuously to a negative value at A′ on
the intermediate branch, as for µ = −0.25. As we move down along the intermediate
branch of the stability boundary toward B in figure 5(a), the magnitude of ccrit

rapidly decreases, corresponding to a neutral disturbance propagating less rapidly
upstream against the base flow as Re decreases. After a small discontinuity at B

(see figure 5e) corresponding to mcrit jumping from 3 to 2, ccrit continues to increase
as Re decreases on the intermediate-Ta branch. Near Re= 192, figure 5(f ) shows
that ccrit changes sign, corresponding to a reversal in direction of the travelling-
wave disturbance, and the existence of a single Re at which the disturbance is
stationary. Finally, as Re increases beyond 300, ccrit approaches its asymptotic value of
about 0.1.

µ = −1

For µ = −1, figure 7(a) shows that Tacrit is single-valued and decreases
monotonically over 0 � Re � 79 from its Re = 0 value of 9414.4. For 79 <Re < 305,
there again exist three values of Tacrit and two disjoint ranges of stable Ta, one
below the low-Ta branch and one between the intermediate- and high-Ta branches.
As for µ = −0.25 and − 0.5, a slope discontinuity occurs where the intermediate-
and high-Ta branches join near the junction at Re = 305 (point A), corresponding to
a jump in mcrit from 1 to 3. The connection between the intermediate- and low-Ta
branches at the turning point C near Re= 79 is smooth, since there is no jump in
mcrit. At B , mcrit jumps to 2, which value persists until at least Re= 105. For large Re,
Tacrit is single-valued and approaches its asymptotic value (Ta∞

crit ≈ 56). We note that
the range of Re for which multiple critical Taylor numbers exist is larger than for
µ = −0.25 or − 0.5.

For µ = −1, figure 7(b) shows that over the entire range 0 � Re < 4 × 104, there
is no Re for which mcrit = 0, unlike the µ = 0, − 0.25 and − 0.5 cases, so that
there is no Re for which the onset of instability occurs through an axisymmetric
disturbance.

The dependence of kcrit on Re (figure 7c) differs from that for less negative values
of µ, since mcrit is constant on the intermediate-Ta branch, and jumps at B, below
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Figure 7. For µ= −1 and η = 0.1: (a) critical Ta, (b) critical m, (c) critical k, (d) critical c
versus Re, (e) Enlargement of part of (d).

the turning point. Again, there is a nearly inverse dependence of kcrit on Re at large
Reynolds number. On a scale capturing its overall variation, the dependence of ccrit

on Re shown in figure 7(d) appears to be similar to that for µ = −0.5 in figure 5(d).
Closer examination of the region near the junction (A) between the intermediate-
and high-Ta branches, however, shows that as the junction is approached from the
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intermediate branch, ccrit decreases for µ = −1 (figure 7e) and increases for µ = −0.5
(figure 5f ).

2.3. Co-rotating cylinders (µ = 0.2)

We here consider the co-rotating case µ = 0.2, investigated for η = 0.5 experimentally
and computationally by Takeuchi & Jankowski (1981) for Re up to 150 and 100,
respectively, and computationally by CP up to ReAP =10 359. For µ = 0.2 and η =0.1,
the Re = 0 Couette flow is linearly stable according to the µ>η2 criterion (Synge
1938), and the stability boundary cannot intersect the Re = 0 axis. The results differ
qualitatively from those shown above for µ<η2, as well as from those of CP for
µ = η =0.5.

For µ = 0.2, figure 8(a) shows that up to about Re= 66.8, the flow is stable for
all Ta, which differs from the stability boundaries for µ � 0 (figures 1a, 4a, 5a and
7a), in which for small Re, SPF is stable for only a finite range of Ta. For Re > 66.8,
the stability boundary has two branches, and there are two disjoint ranges of stable
Ta, the first being finite and lying below the low-Ta branch, and the second being
semi-infinite and lying above the high-Ta branch. As Re increases on the low-Ta
branch from the turning point near Re = 66.8, Tacrit monotonically decreases to
its asymptotic value (Ta∞

crit ≈ 241), while on the high-Ta branch, Tacrit continues to
increase with Re up to at least Re =103. This behaviour contrasts to the single
branch found for large Re when η = 0.1 and µ � 0, on which Tacrit approaches an
asymptote as Re → ∞. The asymptotic behaviour on the lower branch as Re → ∞
contrasts to that for η � 0.5 (CP and CRP), in which cases Tacrit vanishes at a finite
ReAP .

Figure 8(b) shows that mcrit = −3 at the turning point and on both branches for
sufficiently small Re. On the low-Ta branch, mcrit jumps to − 2 near Re= 105, and
remains unchanged at larger Re. On the high-Ta branch, mcrit falls to − 4 near
Re = 162, and to − 5 near Re =622. For µ = 0.2, there is no value of Re for which
the onset of instability occurs through an axisymmetric disturbance. The exclusively
negative values of mcrit correspond to vortices propagating with a helical sense, relative
to the axial flow and inner cylinder rotation, opposite to that for disturbances having
mcrit > 0, and have been found previously only for µ = η = 0.5, for which µ also
exceeds η2.

Figure 8(c) shows that as Re decreases on the low-Ta branch, kcrit increases like
1/Re, as for the other µ values considered. At point B , where mcrit jumps from
− 2 to − 3 as Re decreases, kcrit increases discontinuously. As Re decreases towards
the turning point, kcrit passes through a maximum, and then decreases continuously
through the turning point until mcrit jumps from − 3 to − 4 at point A on the high-Ta
branch. Beyond point A, kcrit decreases monotonically with increasing Re in each
range of Re for which mcrit is constant, with a discontinuous increase each time mcrit

jumps. We note that the critical wavenumbers for the high- and low-Ta branches
intersect at point E near Re = 520, and that this intersection corresponds to two
different values of Tacrit and two different values of mcrit.

For µ = 0.2, figures 8(d) and 8(e) show that at large Re on the low-Ta branch,
ccrit is positive. As Re approaches the turning point (Re ≈ 66.8) along the mcrit = −2
low-Ta branch, ccrit decreases, passing smoothly through zero near Re = 160. The
critical wave speed continues to decrease as we move through the turning point, with
the fall-off being nearly linear in log Re as Re increases along the high-Ta branch.
The discontinuities of ccrit at the Reynolds numbers where mcrit jumps are barely
discernible on the scale of figure 8(d).
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3. Discussion
3.1. Relationship to other work

For spiral Poiseuille flow with η = 0.1, the only previous results appear to be those
of Chung & Astill (1977), Hasoon & Martin (1977), and Recktenwald et al. (1993),
all for µ = 0. Chung & Astill showed critical values of Ta (their figure 5) for Re =0,
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50 and 100, and stated that mcrit = 0 for Re � 100. For η = 0.1, the Taylor number
defined by them is exactly one-ninth of our Ta, and their critical value at Re =0
corresponds to Tacrit ≈ 3 × 104, more than twenty times the value we have computed.
At Re =0, our value Tacrit = 1264.43 is in excellent agreement with that of Walowit,
Tsao & DiPrima (1964), to whose work Chung & Astill made no comparison or
reference. Errors in the results of Chung & Astill at larger η have been discussed by
Takeuchi & Jankowski (1981) and Ng & Turner (1982). The computations of Hasoon
& Martin (1977), which predict that Tacrit increases monotonically with Re over the
range 0 � Re < 1000, are in disagreement with the results shown in figure 1(a). How
much of the discrepancy is due to use of a uniform axial velocity profile by Hasoon
& Martin, and how much is attributable to an error in their governing equations
(DiPrima & Pridor 1979), is not known.

For several values of η, Recktenwald et al. used a shooting method to compute the
onset of instability with respect to axisymmetric disturbances for Re =0, 1, 2, . . . , 20,

and fitted the results to a polynomial over that range, which in our notation takes
the form

Tacrit = Ta0
crit[1 + (Re/a2)

2 + (Re/a4)
4]1/2, (3.1)

where Ta0
crit, a2 and a4 were determined by a least-squares fit. As shown in § 2.1, the

critical disturbance for µ =0 and η =0.1 is indeed axisymmetric up to Re= 46. The
agreement between the approximation (3.1) and our computations is better than 6
parts per million at Re = 0, 1, 2, . . . , 19, and 14 parts per million at Re= 20, suggesting
the correctness of both sets of results. Comparison of (3.1) to our numerical results
shows that the difference is less than 0.3 % at Re = 40, a value twice the highest Re
for which Recktenwald et al. computed results used to determine the coefficients in
the fitted form (3.1). Good agreement also obtains between our computed values of
kcrit and the fitted form of the critical wavenumber

kcrit = 3.3393 − (Re/133.1)2 + (Re/74.76)4, (3.2)

with a root-mean-square (r.m.s.) difference of 7×10−5 for Re = 1, 2, . . . , 20. (The form
kcrit =3.3393[1 −(Re/133.1)2 + (Re/74.76)4] given by Recktenwald et al. has an r.m.s.
error 300 times larger. For η =0.5, however, the functional form for kcrit given by
Recktenwald et al. fits our results very well, and is a much better fit than the analogue
of (3.2).) The r.m.s. difference between our computed wave speeds and the values of
Recktenwald et al. (using (3.2) instead of the expression given by them for kcrit) is
2.4 × 10−4 for the same values of Re. The Re range considered by Recktenwald et al.
was too small for the qualitative differences between results for η = 0.1 and the larger
values of η investigated by those authors to be apparent.

The results shown in table 1 and extrapolated in § 2.1 strongly suggest that
for annular Poiseuille flow (i.e. absent rotation), no linear instability occurs for
0 < η < η̂ ≈ 0.115. These results are consistent with the earlier computational work
of Mahadevan & Lilley (1977) and Garg (1980), who showed that the critical Re
increased rapidly as η approached 0.15 from above. Although the relationship of
the stability of narrow-gap (η → 1) annular Poiseuille flow to the stability of plane
Poiseuille flow has been discussed (Mott & Joseph 1968; Mahadevan & Lilley 1977;
Garg 1980; Landau & Lifshitz 1987; Sadeghi & Higgins 1991), and the linear stability
of circular Poiseuille flow at all Re has been identified as representing a ‘limit result’
for the axial profiles as η → 0 in annular Poiseuille flow (Mott & Joseph 1968),
we are aware of no previous discussion connecting the lack of a critical Re for
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circular Poiseuille flow to the lack of a critical Re for small-η annular Poiseuille
flow. Existence of a vertical asymptote at non-zero η̂ shows that the apparent linear
stability of circular Poiseuille flow (η = 0) at all Re (Salwen, Cotton & Grosch 1980)
is not an isolated case, and that Poiseuille flow is linearly stable for all Re from η = 0
(for circular Poiseuille flow) up to η = η̂ ≈ 0.115 (for annular Poiseuille flow). Such a
result is inconsistent with the statement (Landau & Lifshitz 1987) that ‘There appears
to be a critical Rcr for all non-zero values R1 < R2 < 1; when R1/R2 → 0, Rcr → ∞’,
where Rcr is the critical Reynolds number and R1 and R2 correspond to our Ri and
Ro, respectively. (We thank an anonymous reviewer for comments that ultimately led
us to this passage.)

Finally, for µ = 0, the ηTa versus Re curves in figure 2 show that the stability
boundary for η = 0.1 has a high-Re asymptote very close to the plateau values for
the larger-η cases considered in CP and CRP. As for η = 0.5, the η = 0.1 stability
boundary has a global maximum at an Re at which transition occurs between critical
values of m. Unlike the η = 0.5 case, the results for η = 0.1 show that Tacrit on
the high-Re plateau lies below the Re= 0 value for Taylor–Couette flow. That the
ηTa scaling in figure 2 nearly ‘collapses’ the plateau behaviour for 0.1 � η � 0.95
shows that for a wide range of Re and η, the critical angular velocity of the
inner cylinder (with the outer cylinder fixed) is given by ωcrit = 44.7ν/RiRo, accurate
within 3 %.

3.2. Direction of wave propagation

In the first analysis of the stability of SPF, which considered zero and non-zero
rotation rate ratios µ, Goldstein (1937) asserted that ‘when there is flow parallel to
the axis, no steady disturbance is possible’. This is consistent with the results of the
linear stability analysis for µ � 0, and for all µ considered for η � 0.5 in CP and CRP.
For η = 0.1, however, figures 4(e), 6(f ), and 8(e) show that for each counter-rotating
case considered, ccrit passes smoothly through zero on the intermediate-Ta branch.
Thus, for η = 0.1, the assertion of Goldstein is consistent with the linear stability
analysis except at one Re. Linear stability theory thus predicts that there is a single
Reynolds number Res for which we can decrease Ta from the stable range between
the intermediate- and high-Ta branches, and transition from a steady axisymmetric z-
invariant SPF base flow to more complicated flow through a steady non-axisymmetric
axially-periodic disturbance. For Re slightly less than Res , the direction of propagation
of the disturbance flow would be upstream against the axial component of the base
flow, while for Re slightly greater than Res , the disturbance structure will propagate
downstream. We note that for µ =0 and η =0.8, the experimental work of Bühler
& Polifke (1990) shows that the direction of propagation of axially travelling waves
with m = 1 can be reversed by changing Re.

Our prediction of a single Re at which the onset frequency is zero for neutral
disturbances of infinitesimal amplitude with η = 0.1 can be contrasted to experiments
for larger η in which steady helical vortices exist for a range of conditions (Bühler &
Polifke 1990; Lueptow, Docter & Min 1992; Tsameret & Steinberg 1994). We also
note that for six small values of Re (0.11 � Re � 1.15) and η =0.677, figure 16 of
Giordano et al. (1998) shows that the dimensionless axial phase velocity, Vphase/V Z

(which is our ccrit at Ta= Tacrit), decreases nearly linearly to zero with increasing Ta
in some range above Tacrit. For at least one Reynolds number, their data suggest
that Vphase remains zero over some range of Ta beyond the Ta at which Vphase first
vanishes.
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3.3. Implications for experiment

For η = 0.5 and µ>η2, multi-valued Re–Ta stability boundaries for SPF have been
predicted by Meseguer & Marques (2002) with µTa fixed, and by CP with µ fixed.
As shown by the latter authors, the results of Meseguer & Marques (2002) are
incorrect, owing to restriction of the disturbances to an insufficient range of azimuthal
wavenumbers. For fixed values of µ �= 1, the multi-valued stability boundaries found
for η =0.5 (CP) are double-valued in the Re–Ta plane for Re> Remin > 0. For µ>η2

and 0 � Re <Remin, SPF is linearly stable for all Ta. As Re increases through the
turning point at Remin, closed neutral curves emerge from points in the k–Ta plane.
The work of CP shows that for η = 0.5 and several rotation rate ratios µ > η2, SPF
is unstable in the range between the lowest Ta on any of these neutral curves and
the highest Ta on any of them, and linearly stable for Ta lying above or below
this range. For the cases considered, the upper and lower limits of the unstable
range corresponded to negative and positive values of the azimuthal wavenumber m,
respectively.

For η = 0.1 and µ = 0.2 >η2, the multi-valued stability boundary differs from that
found by CP in that there is no finite Re at which a transition from centrifugal
instability to Tollmien–Schlichting-like instability occurs, with non-rotating annular
Poiseuille flow being linearly stable at all Re. There is still a turning point Remin below
which SPF is linearly stable at all Ta, and above which instability occurs only in a
finite range of Re. On the other hand, for η = 0.1 and µ < 0, the results in § 2.2 show
that the stability boundary extends over the entire range of Re, and is triple-valued
in a finite range of Re. In that range of Re, SPF is stable below the lowest critical Ta
and between the intermediate and highest critical Ta, and unstable for all other Ta.

We are thus led to consider experiments to investigate the triple-valued stability
boundaries predicted for η = 0.1 and µ < 0, with the goal of determining if SPF is
indeed realizable in the two disjoint ranges of stable Ta predicted over a range of Re.
For SPF with η = 0.1, figures 4(a), 5(a) and 7(a) show that for each counter-rotating
case considered, there are three critical values of Ta for Re1(µ) � Re � Re2(µ), where
Re1 and Re2 denote the minimum and maximum values of Re for which multiplicity is
predicted. We denote the values of Ta on the low-, intermediate- and high-Ta branches
by TaL, TaI and TaH , respectively. As discussed in § 2.2, the analysis predicts that in the
multi-valued range of Re, SPF is linearly stable for Ta � TaL and for TaI � Ta � TaH ,
and unstable for TaL � Ta � TaI and Ta � TaH . We note that Re1 and Re2 increase
and decrease, respectively, as µ increases, with the width, Re2 −Re1, of the range being
221, 89 and 32 for µ = −1, − 0.5 and − 0.25, respectively. Comparison of figures 1(a)
and 4(a) shows that there is a negative value of µ (denoted by µ−) at which the
slope of the Re–Tacrit plot is infinite, and that in the range µ− <µ � 0 there is no
Re for which the stability boundary is multi-valued. From our results, we see that
−0.25 < µ− < 0 for η = 0.1. On the other hand, we know from the work of Synge
(1938) that the Re =0 base flow is linearly stable for µ>η2 = 0.01, which suggests
that at Re= 0, Tacrit grows without bound as µ → η2 from below.

For µ < µ−, the stability boundaries shown in figures 4(a), 5(a) and 7(a) suggest that

for Re1(µ) � R̃e � Re2(µ), the three critical values of Ta might be found experimentally
as follows. The lowest value, TaL, might be reached by increasing Re at Ta= 0 until

reaching R̃e, and then increasing Ta at fixed Re until TaL is reached. The intermediate
and upper Taylor numbers, TaI and TaH , respectively, might be reached by starting

at a Taylor number in the range TaI � Ta � TaH at Re = 0, and increasing Re to R̃e.
Then Ta could be increased until TaL is reached, or decreased until TaI is reached.
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A key issue in determining if SPF becomes unstable as predicted by linear analysis
in the range of multi-valuedness is whether instability can set in through disturbances
of finite amplitude in one or both ranges of stable Ta. We first consider µ<µ− and
the possibility of reaching TaL. For the cases considered, the computed values of Re2

(all less than about 300) are not very large, so that there is a reasonable expectation
that the non-rotating annular Poiseuille flow is either globally stable, or at least stable
with respect to a large class of finite-amplitude disturbances. This expectation is
based on the fact that plane Poiseuille flow, the narrow-gap limit (η → 1) of annular
Poiseuille flow, is globally stable up to about 1000 (Carlson, Widnall & Peeters 1982),
while for η =0, global stability obtains for Re up to about 2000. This suggests that
annular Poiseuille flow should be experimentally realizable at the required values of
Re for Ta =0. Furthermore, the excellent agreement between our computations and
the experimental results of Snyder (1965) and Mavec (1973) detailed in CRP clearly
shows that for η = 0.77 and η ≈ 0.95, there is a wide range of Re and µ for which
finite-amplitude disturbances in a linearly stable flow either do not grow, or grow only
in a very narrow range of stable Ta just below the linear Tacrit. Those comparisons are
consistent with the conclusion of Takeuchi & Jankowski (1981) that finite-amplitude
instability does not occur for Re � 40 when µ = 0 and η =0.5.

For η = 0.1 and each negative µ considered, our analysis predicts that as Re → ∞,
SPF is linearly stable for 0 � Ta <Ta∞

crit. Thus, for sufficiently large Re, additional axial
shear apparently has no effect on the onset of centrifugal instability via infinitesimal
disturbances. Moreover, figure 2 strongly suggests that the value of Re∗ at which the
transition from centrifugal to Tollmien–Schlichting-like instability occurs (see CP)
increases without bound as η → η̂ from above, corresponding to the disappearance
of linear instability in annular Poiseuille flow at η̂. Computations reported in § 2.1
suggest the existence, for η < η̂ and µ < 0, of an η- and µ-dependent Ta∞

crit such that
SPF is linearly stable for all Re if Ta <Ta∞

crit, and unstable for sufficiently large Re if
Ta>Ta∞

crit.
For η = 0.1 and µ =0 and − 0.25, it is clear from the Re–Tacrit plots (figures 1(a)

and 4(a), respectively) that development of a multi-valued Re–Tacrit stability boundary
originates with the mcrit = 2 branch assuming an infinite slope at point A, where the
transition from mcrit = 1 to mcrit = 2 occurs as Re increases. As we approache from
below the rotation rate ratio µ− at which multi-valuedness sets in, the slope of the
mcrit = 2 branch must become infinite and the width of the range of multiplicity must
vanish (i.e. Re2 − Re1 = 0). The dependence of µ− on η as η → η̂ from below is not
clear.

4. Conclusions
The linear stability of spiral Poiseuille flow for η = 0.1 is quite different from that

for η � 0.5. One key difference is the absence of a transition from centrifugal to
Tollmien–Schlichting-like instability at high Re. For η = 0.1, there is no critical Re
beyond which the non-rotating flow is unstable. In fact, for η < η̂ ≈ 0.115 there is no
linear instability, so that like circular Poiseuille flow, annular Poiseuille flow for η < η̂

is linearly stable for all Re. Thus, for η < η̂ ≈ 0.115, SPF is linearly stable below a
rotation rate-dependent asymptotic value Ta∞

crit(µ) as Re → ∞.
In addition, for η = 0.1 and each rotation rate ratio considered, we find a range of

Re for which closed disconnected neutral curves exist in the k–Ta plane. For each
negative µ, these neutral curves give rise to a triple-valued Re–Ta stability boundary
over some range of Re, corresponding to two disjoint ranges of stable rotation rates



Linear stability of spiral and annular Poiseuille flow 19

and two disjoint ranges of unstable rotation rates. This contrasts to the results for
larger η, where no multi-valuedness was found for µ<η2. For µ > η2, there is a finite
range of Re beginning at 0 in which the flow is linearly stable for all Ta, and a
semi-infinite range of Re in which a double-valued stability boundary separates two
disjoint ranges of stable rotation rates. For each case considered in which the outer
cylinder rotates, there is a single non-zero Re at which the axial wave speed of the
critical disturbance vanishes, corresponding to a reversal of the axial direction of the
propagating disturbance.
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and DOE Grant DE-FG02-96ER45607. Some of the computations were performed
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